Resonance assignment and secondary structure determination and stability of the recombinant human uteroglobin with heteronuclear multidimensional NMR
Human uteroglobin (h-UG) or Clara cell 10kDa (cc10kDa) is a steroid-dependent, 17 kDa homodimeric, secretory protein with potent anti-inflammatory/immunomodulatory properties.However, the exact physiological role still remains to be determined. It has been hypothesised that its activity is exerted through the binding of a specific target represented by a small molecule (still unknown), and that the binding is regulated by the formation/disruption of two cysteine bonds. The binding properties of the reduced UG have been proved in vitro for several different molecules, but no in vivo data are available to date. However, binding has been observed between reduced rabbit UG and a protein of an apparent molecular mass of 90 kDa and, more recently, we found an h-UG-binding protein (putative receptor), of an apparent molecular mass of 190 kDa, on the surface of several cell types. The recognition involves oxidised h-UG. These findings pose the problem of the relevance of the oxidation state in the recognition process. To determine the solution structure of the oxidised h-UG, we produced wild-type as well as uniformly 15N- and 15N/13C-labelled samples of the recombinant protein. The assignments of the 1H, 15N and 13C resonances are presented,based on a series of homonuclear 2D and 3D and heteronuclear 2D and 3D double and triple resonance NMR experiments. Our results indicate that h-UG is an extremely stable protein under a wide range of temperatures and pH conditions. The secondary structure in solution is in general agreement with previously reported crystal structures of rabbit UG, suggesting that cc10kDa and h-UG are indeed the same protein. Small local differences found in the N-and C-terminal helices seem to support the hypothesis that flexibility involves these residues; moreover, it possibly accounts for the residual binding properties observed when the protein is in the oxidised state.